

TOPOLOGICAL PROPERTIES OF G-HAUSDORFF METRIC

Salwa Salman Abed & Anaam Neamah Faraj

Department of Mathematics, College of Education for pure sciences, Ibn Al- Haitham, University of Baghdad, Iraq

ABSTRACT

Consider a G – metric space (\mathcal{M}, Υ) , we define a general metric space with general Hausdorff metric Γ on the setK of the class of all non-empty compact subsets of \mathcal{M} .We show that if (\mathcal{M}, Υ) is complete, then the Hausdorff metric space (K, Γ) is also complete G – metric space. Similarly, the compactness. Illustrative example by using Mat lab is presented for a Cuachy sequence in (K, Γ) also converges to the element in (K, Γ) .

MSC2010: 28 Axx and 37 Fxx

KEYWORDS: G – Metric Space, Hausdorff Metric, Fractals

Article History

Received: 08 Aug2018 | Revised: 17 Aug2018 | Accepted: 22 Aug 2018

INTRODUCTION AND PRELIMINARIES1

The Hausdorff metric is defined on the space of nonempty closed bounded subsets of a metric space by F. Hausdorff, see[1].One can review the study presented recently by Albundi and Abd [2] to see important aspects of employing this distance in fractals and its applications. Here, we prove some properties of generalized Hausdorff metric under G-metric space.

Definition 1.1 [3]

Let \mathcal{M} be a nonempty set and: $\mathcal{M} \times \mathcal{M} \times \mathcal{M} \to \mathbb{R}^+$ be a function satisfying the following condition

- $\Upsilon(r, s, t) = 0$ if and only if r = s = t,
- $0 < \Upsilon(r, r, s), \forall r, s \in \mathcal{M} \text{ with } r \neq s$,
- $\Upsilon(r, r, s) \leq \Upsilon(r, s, t)$ for all $r, s, t \in \mathcal{M}$ with $s \neq t$,
- $\Upsilon(r, s, t) \leq \Upsilon(r, t, s) = ..., (symmetry in all three variables),$
- $\Upsilon(r, s, t) \leq \Upsilon(r, a, a) + \Upsilon(a, s, t)$ for all r, s, t, $a \in \mathcal{M}$.

Then the function Υ is called generalized metric on \mathcal{M} , and the pair (\mathcal{M}, Υ) is called a G-metric space.

Definition 1.2[4]

Let (\mathcal{M}, Υ) be a Υ -metric space, then the G-metric is called a symmetric if

 Υ (r,s,s) = Υ (r,r,s) for all r,s,t $\in \mathcal{M}$

Many results and examples about Y-metric space and its generalization one can found in [4-14]

Definition 1.3[3]

Let (\mathcal{M}, Y) be a Y-metric space then for $r_0 \in \mathcal{M}, \epsilon > 0$ the Y-ball with center r_0 and radius is $B_Y(r_0, r_0, \epsilon)$ where

 $B_{\Upsilon}(\mathbf{r}_0, \mathbf{r}_0, \epsilon) = \{ s \in \mathcal{M} : \Upsilon(\mathbf{r}_0, s, s) < \epsilon \}.$

Definition 1.4 [3]

Let (\mathcal{M}, Y) be a G – metric space and $\{r_n\}$ be a sequence of points in \mathcal{M} , if there exists $k \in N, \epsilon > 0$ for m, n, $l \ge k$ then the sequence $\{r_n\}$ is said to be

- Υ convergent to μ if Υ (r, r_n, r_m) < ϵ for all m, n \ge k.
- 2-Y -Cauchy if $Y(r_n, r_m, r_l) < \epsilon$ for all $\forall m, n, l \ge k$.

Lemma 1.5[12]

If $\{r_n\}$ be a bounded sequence in G-metric space with Υ –bound \mathcal{M} and for each n, m in N, m > n, and $0 \le \lambda < 1$ such that

 $\Upsilon(\mathbf{r}_n, \mathbf{r}_{n+1}, \mathbf{r}_m) \leq \lambda^n \mathbf{M}$

Definition 1.6 [3]

A G-metric space (\mathcal{M}, Υ) is complete if every Υ -Cauchy sequence (\mathcal{M}, Υ) is Υ - convergent in (\mathcal{M}, Υ).

Remark 1.7[10]: Every G-metric (\mathcal{M}, Υ) on \mathcal{M} defines a metric d_Y on \mathcal{M} [8] given by

 $d_{\Upsilon}(r, s) = \Upsilon(r, s, s) + \Upsilon(s, r, r)$ for all $r, s \in \mathcal{M}$.

Proposition 1.8 [10]

A G-metric space (\mathcal{M}, Υ) is Υ -complete if and only if $(\mathcal{M}, d_{\Upsilon})$ is a complete metric space.

Proposition 1.9 [13]

Let (\mathcal{M}, Υ) be a G-metric space the following statements are equivalent

- {r_n} is Y-convergent to r, if and only if $Y(r_n, r_n, r) \to 0$ as $n \to \infty$,
- $is \Upsilon(r_n, r, r) \to 0 \text{ as } n \to \infty \text{ if and only } if \Upsilon(r_n, r_m, r) \to 0 \text{ as } m, n \to \infty.$

Proposition 1.10[3]: Let (\mathcal{M}, Υ) be a Υ -metric space, then the following are equivalent :

- (\mathcal{M}, Υ) is symmetric.
- $\Upsilon(r, s, s) \leq \Upsilon(r, s, a)$ for all $r, s, a \in \mathcal{M}$,
- $\Upsilon(r, s, t) \leq \Upsilon(r, s, a) + \Upsilon(t, s, b)$ for all r, s, t a, $b \in \mathcal{M}$.

Proposition 1.11 [7]

let $\{r_n\}$ and $\{s_n\}$ be a sequence in a G-metric space (\mathcal{M}, Y) if $\{r_n\}$ converges to r and $\{s_n\}$ converge to s then $\Upsilon(r_n, r_n, s_n)$ converges to $\Upsilon(r, r, s)$.

Definition 1.12 [14]

The self- map f on a Υ -metric space (\mathcal{M}, Υ) is Υ - continuous at $r \in \mathcal{M}$

If and only if every sequence

 $\{r_n\}_{n=1}^{\infty} \subset \mathcal{M}$, with $r_{n \rightarrow}r$, we have $f_{r_n} \xrightarrow{\gamma} f_r$

Now present the following important classes of subset of Υ -metric space \mathcal{M} .

 $2^{\mathcal{M}}$ =The family of all nonempty subset of \mathcal{M} .

 $CB(\mathcal{M})$ = The family of all nonempty closed and bounded subsets of \mathcal{M} .

 $K(\mathcal{M})$ = The family of all nonempty compact subsets of \mathcal{M} .

We now define the general Hausdorff Υ - metric on $CB(\mathcal{M})$

Definition 1.13 [11]: For $a \in \mathcal{M}$ and R, S, $T \in K(\mathcal{M})$ is define:

 $\mu(a, S, T) = \inf \{ \Upsilon(a, s, t) : s \in S, t \in T \}$

and $\rho(R, S, T) = \sup\{\mu(a, S, T) : a \in R\}$

the Υ –Hausdroff distance on K(\mathcal{M})among R, S, T is

 $\Gamma(R, S, T) = \max\{\sup_{a \in R} \Upsilon(a, S, T), \sup_{a \in T} \Upsilon(a, R, S), \sup_{a \in S} \Upsilon(a, R, T)\}$

where,

 $\Upsilon(a, S, T) = d_{\Upsilon}(a, S) + d_{\Upsilon}(S, T) + d_{\Upsilon}(a, T),$

 $d_{\Upsilon}(a, S) = \inf\{d_{\Upsilon}(a, s): s \in S\},\$

and $d_{\Upsilon}(r,s) = \inf\{d_{\Upsilon}(a,s): a \in R, s \in S\}.$

We explain the Υ –Hausdroff distance on K(\mathcal{M}) by the following example.

Example 1.14

Consider the complete G-metric space (\mathcal{M}, Υ) [4], where $\mathcal{M} = \mathbb{R}$, and

 $\Upsilon(\mathbf{r}, \mathbf{s}, \mathbf{t}) = |\mathbf{r} - \mathbf{s}| + |\mathbf{s} - \mathbf{t}| + |\mathbf{t} - \mathbf{r}|, \text{ for all } \mathbf{r}, \mathbf{s}, \mathbf{t} \in \mathcal{M},$

Let R = [0, 5], S = [7, 10], T = [12, 20]

We calculate the Hausdorff distance $\Gamma(R, S, T)$ as follows

Since $d_{\gamma}(r, s) = \Upsilon(r, s, s) + \Upsilon(s, r, r)$.

Thend_{Υ}(s, t) = Υ (s, t, t) + Υ (t, t, s), s \in S, t \in T,

=2|s-t| + 2|t-s| = 4|s-t|

 $d_{\Upsilon}(S,T) = \inf \{4|s-t| : s \in S, t \in T\}, then 4|12-10| = 8$

 $d_{\Upsilon}(r, S) = \inf \{4|r-s| : s \in S\}, \text{ then } 4|r-7| = 4|0-7| = 28$

 $d_{\Upsilon}(r,T) = \inf \{4|r-t| : t \in T\}$, then 4|r-12| = 4|0-12| = 48

 $\sup_{r \in \mathbb{R}} \Upsilon(r, S, T) = \sup\{8 + 4|r - 7| + 4|r - 12|\} = 84$

Similarly, $\sup_{s \in S} \Upsilon(s, R, T) = 56$ and $\sup_{t \in T} \Upsilon(t, R, S) = 44$

So, $\Gamma(R, S, T) = \max\{\sup_{r \in R} \Upsilon(r, S, T), \sup_{t \in T} \Upsilon(t, R, S), \sup_{s \in S} \Upsilon(s, R, T)\} = 84.$

2. MAIN RESULTS

In the following, we give some properties of Γ

Proposition 2.1

If R, S and T are nonempty subsets of Υ – metric space (\mathcal{M}, Υ) then

$$\Gamma(R, S, T) = \inf \{ \epsilon > 0 \ R \subseteq N_{\epsilon} (S \cup T), S \subseteq N_{\epsilon} (R \cup T), T \subseteq N_{\epsilon} (R \cup S) \}$$

Proof

If

$$\{\epsilon > 0 \ R \subseteq N_{\epsilon}(S \cup T), S \subseteq N_{\epsilon}(R \cup T), T \subseteq N_{\epsilon}(R \cup S)\} \neq \emptyset$$

Suppose that

$$\phi = \{ \varepsilon > 0 \ R \subseteq N_{\varepsilon}(S \cup T), S \subseteq N_{\varepsilon}(R \cup T), T \subseteq N_{\varepsilon}(R \cup S) \} < \infty$$

Then ϵ satisfies

$$R \subseteq N_{\epsilon}(S \cup T), S \subseteq N_{\epsilon}(R \cup T)$$
 and $T \subseteq N_{\epsilon}(S \cup R)$, for all $r \in R$ we have

 $\Upsilon(\mathbf{r}, \mathbf{S}, \mathbf{T}) < \epsilon$

Take sup we get

 $\sup_{r \in \mathbb{R}} \Upsilon(r, S, T) < \epsilon$ so $\Upsilon(s, R, T) < \epsilon$ and $\sup_{s \in S} \Upsilon(s, R, T) < \epsilon$

And Υ (t, R, S) < ϵ then sup_{t∈T} Υ (t, R, S) < ϵ

So

 $\Gamma(R, S, T) = \max \{ \sup_{r \in R} \Upsilon(r, S, T), \sup_{s \in S} \Upsilon(s, R, T), \sup_{t \in T} \Upsilon(t, R, S) \} < \epsilon By \text{ definition}$

Thus $\Gamma(\mathbf{R}, \mathbf{S}, \mathbf{T}) \leq \varphi$

On the other hand

If $\Gamma(R, S, T) < \epsilon$, Then $R \subseteq N_{\epsilon}(S \cup T) + \epsilon$, $S \subseteq N_{\epsilon}(R \cup T) + \epsilon$, $T \subseteq N_{\epsilon}(R \cup S) + \epsilon$. So

 $\Gamma(R, S, T) = \inf \{ \epsilon > 0, R \subseteq N_{\epsilon}(S \cup T), S \subseteq N_{\epsilon}(R \cup T), T \subseteq N_{\epsilon}(R \cup S) \}.$

Proposition 2.2

Let(\mathcal{M}, Υ) be a Υ -metric space then for any nonempty subsets R, S and T

of \mathcal{M} ,

$$\Gamma(R, S, T) = \sup_{\substack{a \in S \\ a \in T}} \{ |d_{Y}(a, R) - d_{Y}(a, S)| + |d_{Y}(a, S) - d_{Y}(a, T)| + |d_{Y}(a, T) - d_{Y}(a, R)| \}$$

Proof:

since $d_{\gamma}(a, S) \leq d_{\gamma}(a, s)$ for all $s \in S$, Then

$$d_{\Upsilon}(a, S) - d_{\Upsilon}(a, r) \le d_{\Upsilon}(a, s) - d_{\Upsilon}(a, r) \le d_{\Upsilon}(r, s)$$

 $= d_{\Upsilon}(R, S)$ for all $r \in R, s \in S$

 $= \Upsilon(a, R, S) \leq \Gamma(R, S, T) \dots (2.1)$

and

 $d_{\gamma}(a, R) \leq d_{\gamma}(a, r)$ for all $r \in R$

$$d_{\Upsilon}(a, R) - d_{\Upsilon}(a, T) \le d_{\Upsilon}(a, r) - d_{\Upsilon}(a, t) = d_{\Upsilon}(a, T) = d_{\Upsilon}(R, T)$$
 for all $r \in R, t \in T$

$$\Upsilon(a, R, T) \le \Gamma(R, S, T) ... (2.2)$$

also

 $d_{\Upsilon}(a, T) \leq d_{\Upsilon}(a, t)$ for all $t \in T$

 $d_{\gamma}(a, T) - d_{\gamma}(a, s) \le d_{\gamma}(a, t) - d_{\gamma}(a, s) \le d_{\gamma}(t, s)$ for all $s \in S, t \in T$

 $d_{\Upsilon}(T,S) \leq \Upsilon((a,S,T) \leq \Gamma(R,S,T)...(2.3)$

From(2.1), (2.2) and (2.3) we have

$$|d_{\Upsilon}(a,S) - d_{\Upsilon}(a,R)| + |d_{\Upsilon}(a,S) - d_{\Upsilon}(a,T)| + |d_{\Upsilon}(a,T) - d_{\Upsilon}(a,R)| \leq \Upsilon(a,R,S) + \Upsilon(a,S,T) + \Upsilon(a,R,T)$$

Take sup to both side we have

 $\sup \left\{ |d_{Y}(a, R) - d_{Y}(a, S)| + |d_{Y}(a, S) - d_{Y}(a, T)| + |d_{Y}(a, t) - d_{Y}(a, R)| \le 1 \right\}$

 $\sup_{a \in \mathbb{R}} \Upsilon(a, S, T), \sup_{a \in S} \Upsilon(a, R, S), \sup_{a \in T} \Upsilon(a, R, T), \leq \Gamma(R, S, T).$

Proposition 2.3

Let (\mathcal{M}, Υ) be a G- metric space and let R be a closed subset of \mathcal{M} . if $\{r_n\}$ Υ -converges to r and $r_n \in R \forall n$ Then $r \in R$.

Proof. Suppose $\{r_n\}$ is a sequence that Υ – converges to rand $r_n \in \mathbb{R}$ for all n. There are two cases to consider. If there exists a positive integer n such that $r_n = r$, then it is clear $r \in \mathbb{R}$

If there does not exist a positive integer n such that $r_n = r$ then r is a limit point of R Since R is closed $r \in R$.

Proposition 2.4: Let $x \in \mathcal{M}$ and let $R, S, T \in K(\mathcal{M})$

- $\mu(x, R, R) = 0$ if and only if $x \in R$.
- $\rho(R, S, T) = 0$ if and only if $R \subseteq S \subseteq T$.
- There exists $r_x \in R$ such that $\mu(x, R, R) = \Upsilon(x, r_x, r_x)$.
- iv-There exists $r^* \in R$, $s^* \in S$ and $t^* \in T$ such that $\rho(R, S, T) = \Upsilon(r^*, s^*, t^*)$.
- If $R \subseteq S \subseteq T$ then $\mu(x, T, T) \le \mu(x, S, S) \le \mu(x, R, R)$.
- If $S \subseteq T \subseteq Z$ then $\rho(R, Z, Z) \le \rho(R, T, T) \le \rho(R, S, S)$.
- $\rho(R \cup S \cup T, Z) = max \{\Upsilon(R, Z, Z), \Upsilon(S, Z, Z), \Upsilon(T, Z, Z)\}.$
- $\rho(R, S, T) \leq \Upsilon(a, Z, Z) + \Upsilon(Z, S, T).$

Proof

I- Suppose $x \in R$, then the Infimum Distance is $\Upsilon(x, r, r) = 0$, Where x = r, now, suppose that $\mu(x, R, R) = 0$, then for each positive integer n, there exists $a_n \in R$

such that

 Υ (x, a_n, a_n) < $\frac{1}{n}$ (By definition {r_n} converges to r).

Since R compact, it is closed (by proposition (2.3))

It is follow that $x \in R$.

II. Suppose that $R \subseteq S \subseteq T$, let $a \in R$, Since $a \in S$, $a \in T$ (part i), we have

 $\mu(a, S, T) = 0,$

therefore,

 $\rho(R, S, T) = \sup \{\mu(a, S, T) : a \in R\} = 0.$

To prove the converse, suppose $\rho(R, S, T) = 0$. let $a \in R$, then $0 \le \mu(a, S, T) \le \rho(R, S, T) = 0$

and thus by property (i), we obtain, $a \in S, a \in T$

it follows that $R \subseteq S \subseteq T$.

III. By Definition of an Infimum, Let a Sequence $\{a_n\}$ in R such that

 $\Upsilon(\mathbf{x}, \mathbf{a}_n, \mathbf{a}_n) \le \mu(\mathbf{x}, \mathbf{R}, \mathbf{R}) + \frac{1}{n}$

We know R is a compact. so, there exist a subsequence $\{a_{nk}\}$ of $\{a_n\}$ that converges to an element $a_x \in R$, we get

$$\begin{split} \mu(x, R, R) &\leq \Upsilon \big(x, a_{x,} a_{x} \big) \\ &\leq \Upsilon \big(x, a_{nk,} a_{nk} \big) + \Upsilon \big(a_{nk,}, a_{x,} a_{x} \big) \\ &\leq \mu(x, R, R) + \frac{1}{n_{k}} + \Upsilon \big(a_{nk,}, a_{nk,} a_{x} \big) \end{split}$$

Since

$$\operatorname{Lim}_{n\to\infty}\frac{1}{n_k}+\Upsilon(a_{nk,},a_{nk,}a_x)=0.$$

It follows that,

$$\Upsilon(\mathbf{x}, \mathbf{a}_{\mathbf{x}}, \mathbf{a}_{\mathbf{x}}) = \mu(\mathbf{x}, \mathbf{R}, \mathbf{R})$$

IV. By Definition of Supremum, let $\{r_n\}$ be a Sequence in R. Such that

 $\rho(R, S, T) = \underset{n \to \infty}{\lim} \mu(r_n, S, T) \text{ By property (iii)}$

there exists a sequence $\{s_n\}$ in S and $\{t_n\}$ in T such that, $\mu(r_n, S, T) = \Upsilon(r_n, s_n, t_n)$

Since R, S a compact, there exists a subsequences $\{r_{nk}\}$ of $\{r_n\}$ that converges to element $r^* \in R$, since Ssubsequentially

compact, there exist a sub sequentially $\{s_{nkj}\}$ of $\{s_{nk}\}$ that converges to s^* , similarly $\{t_{nkj}\}$ of $\{t_{nk}\}$ converges tot^{*}.

(Proposition 1.11)

We know that $\Upsilon(r_{nkj}, s_{nkj}, t_{nkj})$ converges to $\Upsilon(r^*, s^*, t^*)$.

Therefore, it follows that

$$\rho(\mathbf{R}, \mathbf{S}, \mathbf{T}) = \lim_{j \to \infty} \mu(\mathbf{r}_{nkj}, \mathbf{S}, \mathbf{T}) = \lim_{j \to \infty} \mu(\mathbf{r}_{nkj}, \mathbf{s}_{nkj}, \mathbf{t}_{nkj}) = \Upsilon(\mathbf{r}^*, \mathbf{s}^*, \mathbf{t}^*)$$

V. Suppose that $R \subseteq S \subseteq$ Tand $x \in \mathcal{M} \in \mathcal{M}$, $t \in R$ then $a \in S$, $a \in T$

It follows that

$$\Upsilon(\mathbf{x}, \mathbf{a}, \mathbf{a}) \ge \{ \inf \{ \Upsilon(\mathbf{x}, \mathbf{s}, \mathbf{s}) : \mathbf{s} \in S \} = \mu(\mathbf{x}, S, S)$$

since this is true for all $a \in R$,we have

$$\mu(\mathbf{x}, \mathbf{R}, \mathbf{R}) = \inf \{ \Upsilon(\mathbf{x}, \mathbf{a}, \mathbf{a}) : \mathbf{a} \in \mathbf{R} \} \ge \mu(\mathbf{x}, \mathbf{S}, \mathbf{S})$$

similarly,

$$\mu(x, S, S) = \inf\{\Upsilon(x, s, s) : s \in S\} \ge \mu(x, T, T)$$

then

 $\mu(x, T, T) \leq \mu(x, S, S) \leq \mu(x, R, R).$

VI- Suppose that $S \subseteq T \subseteq Z$

By part (v), implies that

 $\mu(a, Z, Z) \le \mu(a, T, T) \le \mu(a, S, S) \forall a \in R$

it follows that

 $\sup \{ \mu(a, Z, Z) : a \in R \} \le \sup \{ a, T, T \} : a \in R \} \le \sup \{ \mu(a, S, S) : a \in R \}$

Thus

$$\Upsilon(R, Z, Z) \leq \Upsilon(R, T, T) \leq \Upsilon(R, T, T).$$

VII- By Definition of r and ρ we see that

 $Y (R \cup S \cup T, Z) = \sup\{ \mu (x, x, z) : x \in R \cup S \cup T \}$ = max {sup($\mu(x, x, Z) : x \in R$), sup($\mu(x, x, Z) : x \in S$)) , sup ($\mu (x, x, Z) : x \in T$)} = max{ Y (R, Z, Z), Y (S, Z, Z), Y (T, Z, Z)}

VIII- From part (iii) for all $a \in R$, there exists $Z_a \in Z$ such that $\mu(a, Z, Z) = \Upsilon(a, Z_a, Z_a)$,

then, we have

 $\mu(a, S, T) = \inf\{ \Upsilon(a, s, t) : s \in S, t \in T \}$

 $\leq \inf{\{\Upsilon(a, Z_{a}, Z_{a}) + \Upsilon(Z_{a}, s, t)\}}$

$$= \mu(a, Z_a, Z_a) + \mu(Z_a, S, T)$$

since $a \in R$ (a is arbitrary),take supremum, we get

 $\sup(R, S, T) \le \Upsilon(a, Z, Z) + \Upsilon(Z, S, T).$

Completeness of $K(\mathcal{M})$

Firstly we must prove that $(K(\Box), \Gamma)$ is G-metric space.

Theorem 2.5

Let(\mathcal{M}, Υ) be a G-metric space then ((K \square), Γ) is also Υ - metric space.

Proof

To satisfy the condition of definition (1.1) Clear condition (1) holds,

Since $\sup_{a \in \mathbb{R}} \Upsilon(a, S, T)$, $\sup_{a \in T} \Upsilon(a, R, S)$, $\sup_{a \in S} \Upsilon(a, R, T)$ nonnegative, it follows that

 $\Gamma(R S, T) \ge 0$ for all R, S, $T \in \mathcal{M}$

For second property, suppose R = S = T, therefore $R \subseteq S \subseteq T$ and $T \subseteq S \subseteq R$

By peoperty (ii) proposition 2.4 we find

 $\Upsilon(\mathbf{r}, \mathbf{s}, \mathbf{t}) = 0$ and $\Upsilon(\mathbf{t}, \mathbf{s}, \mathbf{r}) = 0$

Thus $\Gamma(R, S, T) = 0$

Now, suppose that $\Gamma(R, S, T) = 0$

This implies

 $\Upsilon(\mathbf{r}, \mathbf{s}, \mathbf{t}) = \Upsilon(\mathbf{t}, \mathbf{s}, \mathbf{r}) = 0$

Then $R \subseteq S \subseteq T$ and $T \subseteq S \subseteq R$, by property (ii) proposition 2.4

Hence R = S = T

The third property can be proved from symmetry of the definition.

Since

 $\Gamma(R, S, T) = \max\{\sup_{x \in R} \Upsilon(x, S, T), \sup_{x \in T} \Upsilon(x, R, S), \sup_{x \in S} \Upsilon(x, R, T)\}$

= max { sup_{x∈R} Υ (x, T, S), sup_{x∈T} Υ (x, S, R), sup_{x∈S} Υ (x T, R)}= Γ (T, S, R).

To prove (4) :by property (iii) proposition(2.4), guarantees that for each $a \in R$,

there $existsZ_a \in Z$ such that

$$\mu(a, Z, Z) = \Upsilon(a, Z_a Z_a)$$

 $\mu(a, S, T) = \inf \{ \Upsilon(a, s, t) : s \in S, t \in T \} \le \inf \{ \Upsilon(a, Z_a, Z_a) + \Upsilon(Z_a, s, t) \}$

 $\mu(a, Z_a, Z_a) + \mu(Z_a, S, T) \forall a \in R,$

Taking supremum we find

 $\sup(R, S, T) \leq \Upsilon(a, Z, Z) + \Upsilon(Z, S, T).$

Hence (\mathcal{M}, Γ) is Υ - metric space.

To verify the completeness of $K(\Box)$ we need to prove some proposition as preliminary steps:

Definition2.6

For $\epsilon > 0$ we define R + ϵ as the following

 $R + \epsilon = \{x \in \mathcal{M} \colon \Upsilon(x, R, z) < \epsilon \} \text{ for fix } z \text{ in } \mathcal{M}.$

Proposition 2.7

 $R + \epsilon$ is closed for all possible choices of $R \in \mathcal{M}$ and $\epsilon > 0$.

Proof

Let $R \in \mathcal{M}$ and $\epsilon > 0$. additionally, let r be a limit point of $R + \epsilon$,

Then there exists sequence $\{r_n\}$ of points in $(R + \epsilon) \setminus \{r\}$ that converges to r.

Since $r_n \in \mathbb{R} + \epsilon \forall n$, by definition

 $\mu(\mathbf{r}_n, \mathbf{R}, \mathbf{R}) \leq \epsilon$ for all n.

Also for each n there exists $a_n \in R$, (Bypart (ii) proposition(2.4))

such that

 $\mu(r_n, R, R) = \Upsilon(r_n, a_n, a_n)$. Thus $\Upsilon(r_n, a_n, a_n) \leq \epsilon$ for all n.

The set R is sequentially compact, so the sequence $\{a_n\}$ has a subsequence $\{a_{n_k}\}$ that converges to a point $a \in$

Since $\{r_n\}$ converges to r, we know that any subsequence of $\{r_n\}$ converges to r.

Therefore, the subsequence $\{r_{n_{\rm P}}\}$ converges to r.

By Proposition (1.11), we get $\Upsilon(\mathbf{r}_{n_k}, \mathbf{a}_{n_k}, \mathbf{a}_{n_k})$ converges to $\Upsilon(\mathbf{r}, \mathbf{a}, \mathbf{a})$.

Note that $\{r_{n_k}\}$ and $\{a_{n_k}\}$ are subsequences of $\{r_n\}$ and $\{a_n\}$, respectively,

So $\Upsilon(\mathbf{r}_{\mathbf{n}_k}, \mathbf{a}_{\mathbf{n}_k}, \mathbf{a}_{\mathbf{n}_k}) \leq \epsilon$ for all k.

Therefore, we find that

 $\Upsilon(\mathbf{r}, \mathbf{a}, \mathbf{a}) \leq \epsilon$.

By the definition of $\mu(r, R, R)$, Then

 $\mu(r, R, R) < \epsilon$,so, $r \in : R + \epsilon$

By our definition of R + ϵ . Since r was an arbitrary limit point, then,

R + ϵ , is a closed set since it contains all of its limit points. Δ

Theorem 2.8

Let R, S, T $\in \mathcal{M}$ and that $\epsilon > 0$. Then $\Gamma(R, S, T) \leq \epsilon$ if and only if $R \subseteq S + \epsilon$, $S \subseteq T + \epsilon$ and $T \subseteq R + \epsilon$.

Proof

By symmetry, it is sufficient. To prove $\rho(S, S, R) \leq \epsilon$, if and only if $S \subseteq R + \epsilon$.

Suppose $S \subseteq R + \epsilon$. By definition of the set $R + \epsilon$, for all $s \in S$,

Then

 $\mu(s, s, R) \leq \epsilon$

It follows that $\rho(S, S, R) \leq \epsilon$.

Now suppose $\rho(S, S, R) \leq \epsilon$. Then for all $s \in S$,

 $\mu(s, s, R) \leq \epsilon$.

It follows by definition of the set $R + \epsilon$, that $S \subseteq R + \epsilon$.

Similarly, we can prove that $R \subseteq S + \epsilon$, and $T \subseteq R + \epsilon$.

Proposition 2.9:Let $\{R_n\}$ be a Y-Cauchy sequence in k and let $\{n_k\}$ be an increasing sequence of positive integers. If $\{r_{nk}\}$ is a Y-Cauchy sequence in \mathcal{M} for which $r_{nk} \in R_{nk}$ for all k, then there exists a Y-Cauchy sequence $\{y_n\}$ in \mathcal{M} such that $\{y_n\} \in R_n$ for all n, and $y_{nk} = r_{nk}$, for all k.

Proof

Suppose $\{r_{nk}\}$ is a Υ -Cauchy sequence in \mathcal{M} for which $r_{nk} \in \mathbb{R}_{nk}$ for all k.

Define $n_0 = 0$, for each n that satisfy $n_{k-1} < n \le n_k$. Use Property (iii) to choose $y_n \in R_n$ such

that $\mu(r_{n_k}, R_n, R_n) = \Upsilon(r_{n_k}, y_n, y_n)$, then using the definitions of ρ and μ , we find

$$\Upsilon(\mathbf{r}_{\mathbf{n}_{k}}, \mathbf{y}_{\mathbf{n}}, \mathbf{y}_{\mathbf{n}}) = \mu(\mathbf{r}_{\mathbf{n}_{k}}, \mathbf{R}_{\mathbf{n}}, \mathbf{R}_{\mathbf{n}}) \leq \rho(\mathbf{R}_{\mathbf{n}_{k}}, \mathbf{R}_{\mathbf{n}}, \mathbf{R}_{\mathbf{n}}) \leq \Gamma(\mathbf{R}_{\mathbf{n}_{k}}, \mathbf{R}_{\mathbf{n}}, \mathbf{R}_{\mathbf{n}})$$

Note that since $r_{n_k} \in R_{n_k}$, then

$$\Upsilon(\mathbf{r}_{n_k}, \mathbf{y}_{nk}, \mathbf{y}_{nk}) = \mu(\mathbf{r}_{n_k}, \mathbf{R}_{nk}, \mathbf{R}_{nk}) = 0$$

It follows that $y_{nk} = r_{nk}$ for all k.Let $\epsilon > 0$, Since $\{r_{nk}\}$ is a Y-Cauchy sequence in \Box , there exists a positive integer K such that

$$\Upsilon(\mathbf{r}_{n_k}, \mathbf{r}_{n_j}, \mathbf{r}_{n_j}) < \frac{\epsilon}{3}$$
 for all k, $j \ge K$.

Since $\{R_n\}$ is a Y-Cauchy sequence in K, by definition there exists a positive integer $N \ge n_k$ such that

 $\Gamma(R_n, R_m, R_m) < \frac{\epsilon}{3}$ for all $n, m \ge N$.

Suppose that $n, m \ge N$.

Then there exists integers j, k \geq K such that $n_{k-1} < n \leq n_k$, and $n_{J-1} < m \leq n_j$,

Then we find that

$$Y(\mathbf{r}_{n}, \mathbf{y}_{m}, \mathbf{y}_{m}) \leq Y(\mathbf{r}_{n}, \mathbf{r}_{n_{k}}, \mathbf{r}_{n_{k}}) + Y(\mathbf{r}_{n_{k}}, \mathbf{r}_{n_{j}}, \mathbf{r}_{n_{j}}) + Y(\mathbf{r}_{n_{j}}, \mathbf{y}_{m}, \mathbf{y}_{m})$$

$$= \mu(\mathbf{r}_{n_{k}}, \mathbf{R}_{n}, \mathbf{R}_{n}) + Y(\mathbf{r}_{n_{k}}, \mathbf{r}_{n_{j}}, \mathbf{r}_{n_{j}}) + Y(\mathbf{r}_{n_{j}}, \mathbf{y}_{m}, \mathbf{y}_{m})$$

$$\leq \rho(\mathbf{R}_{n_{k}}, \mathbf{R}_{n}, \mathbf{R}_{n}) + Y(\mathbf{r}_{n_{k}}, \mathbf{r}_{n_{j}}, \mathbf{r}_{n_{j}}) + \rho(\mathbf{R}_{n_{j}}, \mathbf{R}_{n}, \mathbf{R}_{n})$$

$$\leq \Gamma(\mathbf{R}_{n_{k}}, \mathbf{R}_{n}, \mathbf{R}_{n}) + Y(\mathbf{r}_{n_{k}}, \mathbf{r}_{n_{j}}, \mathbf{r}_{n_{j}}) + \Gamma(\mathbf{R}_{n_{j}}, \mathbf{R}_{m}, \mathbf{R}_{m})$$

$$\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon$$

therefore, the set { y_n } is a Y- Cauchy sequence in \mathcal{M} such that $y_n \in R_n$ for all n and

 $y_{nk} = r_{n_k}$ for all n. Since a subset R is compact if and only if it is closed and totally boundedso, we need to prove

following

Proposition 2.10

the

Let $\{R_n\}$ be a sequence in \mathcal{M} and let R be the set of all points $r \in \mathcal{M}$ such that there exists a sequence $\{r_n\}$ that converges to r and satisfies $r_n \in R_n$ for all n. If $\{R_n\}$ is a Y- Cauchy sequence, then the set R is closed and nonempty.

Proof: Let us prove that R is nonempty. Since $\{R_n\}$ is a Cauchy sequence, there exists an integern₁ such that

$$\Gamma(\mathbf{R}_{m},\mathbf{R}_{n},\mathbf{R}_{n}) < \frac{1}{2^{1}} = \frac{1}{2} \text{for all } m,n \ge n_{1}.$$

www.iaset.us

12

Similarly, there exists an integern₂> n_1 such that

$$\Gamma(\mathbf{R}_{m}, \mathbf{R}_{n}, \mathbf{R}_{n}) \leq \frac{1}{2^{2}} = \frac{1}{4} \text{ for all } m, n \geq n_{2}$$

Continuing this process we have an increasing sequence $\{n_k\}$ such that

$$\Gamma(\mathbf{R}_{m},\mathbf{R}_{n},\mathbf{R}_{n}) < \frac{1}{2^{k}} = \frac{1}{2} \text{ for all } m,n \ge n_{k}.$$

Let x_{n_1} be a fixed point in R_{n_1} . By Property (2) of Theorem (2.4), we can choose $x_{n_2} \in R_{n_2}$ such that

$$\Upsilon(\mathbf{x}_{n_1}, \mathbf{x}_{n_2}, \mathbf{x}_{n_2}) = \mu(\mathbf{x}_{n_1}, \mathbf{R}_{n_2}, \mathbf{R}_{n_2}).$$

Then by definition of μ , ρ , and h, we find

$$\begin{split} &\Upsilon(\mathbf{x}_{n_{1}}, \mathbf{x}_{n_{2}}, \mathbf{x}_{n_{2}}) = \mu(\mathbf{x}_{n_{1}}, \mathbf{R}_{n_{2}}, \mathbf{R}_{n_{2}}) \\ &\leq \rho(\mathbf{R}_{n_{1}}, \mathbf{R}_{n_{2}}, \mathbf{R}_{n_{2}}) \\ &\leq \Gamma(\mathbf{R}_{n_{1}}, \mathbf{R}_{n_{2}}, \mathbf{R}_{n_{2}}) < \frac{1}{2}. \end{split}$$

Similarly we can $choosex_{n_3} \in \mathbb{R}_{n_3}$ such that

$$\begin{split} &\Upsilon(\mathbf{x}_{n_2}, \mathbf{x}_{n_3}, \mathbf{x}_{n_3}) = \mu(\mathbf{x}_{n_2}, \mathbf{R}_{n_3}, \mathbf{R}_{n_3}) \\ &\leq \rho(\mathbf{R}_{n_2}, \mathbf{R}_{n_3}, \mathbf{R}_{n_3}) \\ &\leq \Gamma(\mathbf{R}_{n_2}, \mathbf{R}_{n_3}, \mathbf{R}_{n_3}) < \frac{1}{4}. \end{split}$$

Continuing this process we can construct a sequence $\{x_{n_K}\}$ where each $x_{n_K} \in \mathbb{R}_{n_K}$ and for all k,

$$Y(x_{n_{K}}, x_{k+1}, x_{n_{k+1}}) = \mu(x_{n_{k}}, R_{n_{k+1}}, R_{n_{k+1}}).$$

$$\leq \rho(R_{n_{k}}, R_{n_{k+1}}, R_{n_{k+1}})$$

$$\leq \Gamma(R_{n_{k}}, R_{n_{k+1}}, R_{n_{k+1}}) < \frac{1}{2^{k}}.$$

By previous properties $\{x_{n_k}\}$ is a Cauchy sequence. Therefore, since $\{x_{n_k}\}$ is a Cauchy sequence and $x_{n_k} \in \mathbb{R}_{n_k}$ for all k, by the proposition (2.8). There exists a Cauchy sequence $\{y_n\}$ in \mathcal{M} such that $y_n \in \mathbb{R}_n$ for all n and $y_{n_k} = x_{n_k}$ for all k.

Since \mathcal{M} is complete, the Cauchy sequence $\{y_n\}$ converges to a point $y \in \mathcal{M}$. Since $y_n \in \mathbb{R}_n$ for all n, then by definition of the set, $y \in \mathbb{R}$. Therefore R is nonempty.

Now we will prove that R is closed. Suppose r is a limit point of R. Then there exists a sequence $r_k \in R \setminus \{r\}$ that converges to r. Since each $r_k \in R$, there exists a sequence $\{y_n\}$ such that

 $\{y_n\}$ converges to r_k and $y_n \in R_n$ for each n. Consequently, there exists an integer n_1 such that $x_{n_1} \in R_{n_1}$ and

 $\Upsilon(x_{n_1}, r_1, r_1) < 1.$

Similarly, there exists an integer $n_2 > n_1$ and a point $x_{n_2} \in \mathbb{R}_{n_2}$ such that

$$\Upsilon(\mathbf{x}_{\mathbf{n}_2},\mathbf{r}_2,\mathbf{r}_2) < \frac{1}{2}.$$

Continuing this process we can choose an increasing sequence $\{n_k\}$ of integers such that $\Upsilon(x_{n_k}, r_k, r_k) < \frac{1}{k}$ for all

k.Then it follows that

 $\Upsilon(\mathbf{x}_{n_k}, \mathbf{r}, \mathbf{r}) \leq \Upsilon(\mathbf{x}_{n_k}, \mathbf{r}_k, \mathbf{r}_k) + \Upsilon(\mathbf{r}_k, \mathbf{r}, \mathbf{r}).$

Note that as we take k to infinity, the distance between $\{x_{n_k}\}$ and a converges to zero, so it follows that $\{x_{n_k}\}$

converge to r. Every convergent sequence is Cauchy, so it follows that

 $\{x_{n_k}\}$ is a Cauchy sequence for which $x_{n_k} \in \mathbb{R}_{n_k}$ for all k. The proposition (2.9) guarantees that there exists a ny

Cauchy

sequence $\{y_n\}$ in \mathcal{M} such that $y_n \in \{R_n \text{ for all } n \text{ and } y_{n_k} = x_{n_k}$.

Therefore $r \in R$, so R is closed.

Definition 2.11[4]

A set $E \subseteq \mathcal{M}$ is called a bounded set if there exists $r \in \mathcal{M}$ and $\epsilon > 0$ such that

 $E \subset B_{\gamma}(r, r, \epsilon).$

Proposition212

Let $\{D_n\}$ be a sequence of totally bounded sets in \mathcal{M} , and let R be any subset of \mathcal{M} . if for all $\epsilon > 0$, there exists a positive integer ssuch that $R \subseteq D_s + \epsilon$, then R is totally bounded.

Proof

Let $\epsilon > 0$ chose a positive integer s so that $R \subseteq D_s + \frac{\epsilon}{4}$. Since D_s is totally bounded, we can choose a finite set $\{r_i: 1 \le i \le q\}$, where $r_i \in D_s$ such that

$$D_{s} \subseteq \bigcup_{i=1}^{q} B_{\Upsilon}\left(r_{i}, \frac{\epsilon}{4}, \frac{\epsilon}{4}\right).$$

By reordering ther_i's, we may assume that $B_{\Upsilon}\left(r_{i}, \frac{\epsilon}{2}, \frac{\epsilon}{2}\right) \cap R \neq \emptyset$ for $1 \le i \le p$ and

$$B_{\Upsilon}\left(r_{i},\frac{\epsilon}{2},\frac{\epsilon}{2}\right) \cap R = \emptyset \text{forp} < i$$

Then for all $1 \le i \le p$, let $y_i \in B_Y\left(y_i, \frac{\epsilon}{2}, \frac{\epsilon}{2}\right) \cap R$. We claim that $R \subseteq \bigcup_{i=1}^q B_Y(y_i, \epsilon, \epsilon)$.

Let $a \in R$ then, $a \in D_s + \frac{\epsilon}{4}$. So, Byproposition (2.4) and part (iii),

 $\mu(a, D_s, D_s) \leq \frac{\epsilon}{4}$.

Then there exists $r \in D_s$ such that $\gamma(a, r, r) = \mu(a, D_s, D_s)$.

Then we find that

$$\begin{split} \gamma(a,r_i,r_i) &\leq \gamma(a,r,r) + \gamma(r,r_i,r_i) \\ &\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{2} \end{split}$$

 $=\epsilon$

So, $r \in B_{\gamma}\left(r_{i}, \frac{\epsilon}{2}, \frac{\epsilon}{2}\right)$ for some $1 \le i \le p$. Thus we have

$$y_i \in B_{\Upsilon}\left(x_i, \frac{\epsilon}{2}, \frac{\epsilon}{2}\right) \cap R.$$

Such that $\gamma(x_i, y_i, y_i) < \frac{\epsilon}{2}$. It follows that

$$\gamma(a, y_i, y_i) \leq \gamma(a, x_i, x_i) + \gamma(x_i, y_i, y_i) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore, since for each $a \in R$ we found y_i for $1 \le i \le p$ such that $a \in B_{\gamma}(y_i, \epsilon, \epsilon)$.

Then it follows that

$$R \subseteq \bigcup_{i=1}^{P} B_{\Upsilon}(y_i, \epsilon, \epsilon).$$

Thus by Definition, R is totally bounded.

Theorem 2.13

If (\mathcal{M}, Υ) is complet, then $(k(\mathcal{M}), \Gamma)$ is complet.

Proof

To prove $(k(\mathcal{M}), \Gamma)$ complete we must prove every Y- Cauchy sequence in the space be Y-convergent to point in the same space. Let $\{A_k\}$ be Y-Cauchy sequence in \mathcal{M} , and let A the set of all points $x \in \mathcal{M}$ such that there is a sequence $\{x_n\}$ that converges to x and $x_n \in A_n$ for all n. We must prove that $A \in \mathcal{M}$ and $\{A_k\}$ converges to A. By proposition (2.10) A is closed and nonempty. Let $\epsilon > 0$, since $\{A_n\}$ is Y-Cauchy then there exists a positive integer L such that $\Gamma(A_n, A_m, A_1) < \epsilon$ for all m, n, $l \ge L$. Then by theorem (2.8),

$$A_{l} \subseteq (A_{m} \cup A_{n}) + \epsilon \text{ for all } l > m, n \ge L$$

 $let A_k = A_n \cup A_m$. Then $A_l \subseteq A_k + \epsilon$.

Let $a \in A$ to show $a \in A_k + \epsilon$, fixed $k \ge L$. By definition of the set A, here exists asequence $\{x_i\}$ such that

 $x_i \in A_i$ for all i and $\{x_i\}$ converges to a. By proposition (2.7),

we know $A_k + \epsilon$ is closed.

Since $x_i \in A_k + \epsilon$ for all i then it follows that $a \in A_k + \epsilon$, this shows that $A \subseteq A_k + \epsilon$.

The set A is a totally bounded (by proposition (2.12)). Hence A is complete, since A aclosed subset of complete

GG- mertic space, and A is nonempty complete and totally bounded, then Aiscompact and A $\in \Upsilon$. Let $\epsilon > 0$.

To show that $\{A_k\}$ convergent to $A \in \Upsilon$. There exists a positive integer L such that

 $\Upsilon(A_k, A_k, A) < \epsilon \text{ for all } k \ge L.$

We need show that $A \subseteq A_k + \epsilon$, $A_k \subseteq A + \epsilon$ where $k = \max \{ m, n \}$. From the first part of proof we know, there exists

Lsuch that for all $k \ge L$

$$A \subseteq A_{K} + \epsilon \dots (2.4)$$

To prove $A_k \subseteq A + \epsilon$, let $\epsilon \ge 0$. Since $\{A_k\}$ is a Υ – Cauchy sequence in Υ

There exists a positive integer L such that for all l, $k \ge L$

$$\Upsilon(A_k, A_k, A_l) < \frac{\epsilon}{2} ... (2.5)$$

and there exists a strictly increasing sequence $\{k_i\}$ of positive integer such that $k_1 > L$ and such that

$$\Gamma(A_{k,}A_{k,}A_{l}) < \frac{\epsilon}{2^{-i-1}} \forall k, l \ge k_{i}$$

We can use property (iii) and proposition (2.8) to get the following:

since $A_k \subseteq A_{n1} + \frac{\epsilon}{2}$, there exists $x_{k1} \in A_{k1}$ such that $\gamma(y, x_{k1}, x_{k1}) \le \frac{\epsilon}{2}$. Since $A_{k1} \subseteq A_{n2} + \frac{\epsilon}{4}$, there exists $x_{k2} \in A_{k2}$ such that $\gamma(x_{k1}, x_{k2}, x_{k2}) \le \frac{\epsilon}{4}$. Since $A_{k2} \subseteq A_{n3} + \frac{\epsilon}{8}$, there exists $x_{k3} \in A_{k3}$ such that $\gamma(x_{k2}, x_{k3}, x_{k3}) \le \frac{\epsilon}{8}$. By continuing this process we get a sequence $\{x_{ki}\}$ such that $x_{ki} \in A_{ki}$, for all i. And $\Gamma(A_{k}A_{k}A_{l}) < \frac{\epsilon}{2^{-i-1}}$. By proposition (2.2) we find $\{x_{ki}\}$ is a Y-Cauchy sequence, so by proposition (2.14) the limit of the sequence a is in A.Additionally we find that $\gamma(y, x_{ki}, x_{ki}) \le \gamma(y, x_{k1}, x_{k1}) + \gamma(x_{k1}, x_{k2}, x_{k2}) + \gamma(x_{k2}, x_{k3}, x_{k3}) + \dots + \gamma(x_{ki-1}, x_{ki}, x_{ki}) \le \frac{\epsilon}{2} + \frac{\epsilon}{4} + \frac{\epsilon}{8} \dots + \frac{\epsilon}{2^i} < \epsilon$ Since $\gamma(y, x_{ki}, x_{ki}) \le \epsilon$ for all i it follows that $\gamma(y, a, a) \le \epsilon$ therefore

 $y \in A + \epsilon$, thus there exists L such that $A_k \subseteq A + \epsilon$, so it follows that $\Gamma(A_k, A_k, A) < \epsilon \text{ for all } k \ge L$

and hence $\{A_k\}$ converges to $A \in \mathcal{M}$. Therefore (\mathcal{M}, Γ) is complete.

Compactness of $K(\mathcal{M})$

Theorem 2.14

If (\mathcal{M}, Υ) is compact then $(K(\mathcal{M}), \Gamma)$ is compact.

Proof

By previous result, we know that $K(\mathcal{M})$ is compact. Since we know that a set is compact if and only if it is complete and totally bounded, We must prove that $K(\mathcal{M})$ is totally bounded. Let $\epsilon > 0$ since \mathcal{M} is totally bounded, there exists a finite set { $x_i : 1 \le i \le n$ } such that

 $\mathcal{M} \subseteq \bigcup_{i=1}^{n} B_{\Gamma}(x_{i}, x_{i}, \frac{\epsilon}{2})$

and $x_i \in \mathcal{M}$ for each i. Let { $C_k : 1 \le k \le 2^{p-1}$ } be collection of all possible non-empty union of the closure of these balls. Since \mathcal{M} is compact, the closure of each ball is the compact set.

Therefore each C_k is a finite union of compact sets and thus compact. So $C_k \in \mathcal{M}$, we want to show that

$$\mathbf{K}(\mathcal{M}) \subseteq \bigcup_{i=1}^{2^{k-1}} \mathbf{B}_{\Gamma} \left(\mathbf{C}_{k}, \mathbf{C}_{k}, \epsilon \right)$$

To do this, let $Z \in K(\mathcal{M})$. Then we want to show that

 $Z \in B_{\Gamma}(C_k, C_k, \epsilon)$ for some $K(\mathcal{M})$.

Choose $S_Z = \{i: Z \cap \overline{B_Y(x_i, x_i, \epsilon)} \neq \emptyset \}$, then choose an index j so that

$$C_j = \bigcup B_{\Upsilon}(x_{i,x_{i,\frac{\epsilon}{3}}})$$

Since $Z \subseteq C_i$, (by part (ii) and proposition (2.4)) then we know $\rho(Z, C_i, C_i) = 0$

Now let c be an element in C_j then there exists some $i \in S_z$ and $z \in Z$ such that $c, z \in \overline{B_{Y}(x_1, x_1, \frac{\epsilon}{3})}$

This implies that $(c, Z, Z) \leq \frac{2}{3} \epsilon$.

Since our choice of c was arbitrary then we find that $(C_j, C_j, Z) < \frac{2}{3} \epsilon$.

Therefore we find that

 $\Gamma(Z, C_i, C_j) = \rho(C_i, C_j, Z) < \epsilon$ and thus $Z \in B_{\Gamma}(C_i, C_j, \epsilon)$.

So, \mathcal{M} is totally bounded, therefore we have proved that if (\mathcal{M}, Υ) is compact then $(K(M), \Gamma)$ is compact.

Finally, we give construct a Cuachy sequence of non-empty compact subsets converges to nonempty compact in the following example

Example 2.15: let (\mathcal{M}, Υ) as in example (1.14) and we define the set S as the unit circle in \mathcal{M} , i.e,

$$S = \{p = (x, y): \Upsilon(p, 0, 0) = 1\}$$

And for each k, let $S_k = \{(r,t): r = \frac{1}{4} + \frac{1}{4k}\cos(kt), 0 \le t \le 2\pi\},\$

Checking the Hausdorff distance between sets, we see that $\Gamma(S_k, S, S) = \frac{1}{4k}$

We can see that $\{S_k\}$ converges to S as k increases, see figures (1-...)

ACKNOWLEDGMENTS

I would like to acknowledge Miss Zahra Mahmood Mohamed Hasan.

REFERENCES

- 1. G.A., Edgar, "Measure Topology and Fractal Geometry", Spring-verlage, New York, (1990).Nonlinear and Convex Analysis, vol. 7, no. 2, pp. 289–297, 2006.
- 2. Sh. S. Albundians M.S. Abd" A study about fractal image compression using optimization techniques", Inter. Conf. on Mate., Appl. Phys. and Enge.,
- 3. Mustafa, Z, Sims, B: Anew approach to generalized metric spaces. J. Nonlinear Convex Anal.7,289-297(2006)
- 4. S. S. Abed and H. H. Luaibi, "Two fixed point theorems in generalized metric spaces" International Journal of Advanced Statistics and Probability, 4 (1) 16-19, 2016.
- 5. Gupta, V., Tripathi, A. K., DEEP, R., & SHARMA, R. (2012). Common Fixed Point Theorem in G-metric Space. International Journal of Mathematics and computer Application Research, 2(3), 1-4.
- 6. S. S. Abed and H. H. Luaibi, "Implicit Fixed Points in Menger G- Metric Spaces", International Journal of advanced Scientific Technical Research, 6(1), 117-127, 2016.
- 7. S. S. Abed "Fixed Point Principles in Generalb Metric Spaces and b –Menger Probabilistic spaces", Journal of AL-Qadisiyah for computer science and mathematics, 10(.2), 2521-0204, 2018.
- 8. S, S, Abed and H. A. Jabbar, "Coupled points for total weakly contraction mappings in g_m –spaces" International Journal of advanced Scientific Technical Research, 6(3), 64-79, 2016.
- S, S, Abed and H. A. Jabbar, "Coupled points for total weakly contraction mappings via ρ-distance" International Journal of Basic and Applied Sciences, 5 (3), 164-171, 2016
- 10. N.Tahat et al; fixed point theory and application, common fixed points for single valued and multi-valued maps satisfying generalized contraction in *G*-metric spaces.
- 11. Z. Mustafa O.hamed and F. Aawdeh. "Some fixed point Theorems for mapping on complete g-metric Space, Hindawipublishing Corporation, Fixed Point Theory and Application (2008) 1-12.
- 12. N. Tahat et al; fixed point theory and application, common fixed points for single valued and multi-valued maps satisfying generalized contraction in *G*-metric spaces.
- 13. S. S. Abed and H. H. Luaibi, "Fixed Points in G-Metrics and probabilistic G-metric spaces".
- 14. L. Gajic^{'a,} M.Stojakovic^{,b} Sehgal-Thomas Type Fixed Point Theorems in Generalized Metric Spaces Filomat 31:11 (2017), 3347–3356
- 15. T. Phaneendra1 and K. Kumara Swamy2 uniqe fixed point in G-metric space through greatest lower bound properties. Novi Sad J. Math. Vol. 43, No. 2, 2013, 107-115